bpe_framework/nocklist.md
2025-08-27 14:02:03 -07:00

83 lines
1.9 KiB
Markdown

#### 1. Implement Model Checkpointing and Serialization
Implement serialization for model parameters
Save/load optimizer state for resuming training
Add versioning to handle model format changes
#### 2. Add Validation and Evaluation Pipeline
Implement a validation dataset split
Add evaluation metrics (perplexity, accuracy, etc.)
Create a proper test harness for benchmarking
#### 3. Improve the Training Loop
Add learning rate scheduling
Implement gradient clipping
Add early stopping based on validation performance
Create training progress visualization
#### 4. Enhance the Tokenizer
Add support for special tokens (UNK, PAD, BOS, EOS)
Implement vocabulary trimming/pruning
Add serialization/deserialization for the tokenizer
#### 5. Implement Text Generation
Add inference methods for text generation
Implement sampling strategies (greedy, beam search, temperature)
Create a demo script to showcase model capabilities
#### 6. Optimize Performance
Add CUDA support if not already implemented
Implement mixed-precision training
Optimize data loading and preprocessing pipeline
#### 7. Create Examples and Documentation
Build example scripts for common use cases
Create comprehensive documentation
Add unit tests for critical components
#### 8. Extend Model Architectures
Implement different attention mechanisms
Add support for different model sizes (small, medium, large)
Experiment with architectural variations
#### 9. Add Dataset Support
Implement support for common NLP datasets
Create data preprocessing pipelines
Add data augmentation techniques
#### 10. Build a Simple Interface/API
Create a simple Python API for training and inference
Add command-line interface for common operations
Consider building a simple web demo