bpe_framework/nocklist.md
2025-08-27 14:02:03 -07:00

1.9 KiB

1. Implement Model Checkpointing and Serialization

Implement serialization for model parameters

Save/load optimizer state for resuming training

Add versioning to handle model format changes

2. Add Validation and Evaluation Pipeline

Implement a validation dataset split

Add evaluation metrics (perplexity, accuracy, etc.)

Create a proper test harness for benchmarking

3. Improve the Training Loop

Add learning rate scheduling

Implement gradient clipping

Add early stopping based on validation performance

Create training progress visualization

4. Enhance the Tokenizer

Add support for special tokens (UNK, PAD, BOS, EOS)

Implement vocabulary trimming/pruning

Add serialization/deserialization for the tokenizer

5. Implement Text Generation

Add inference methods for text generation

Implement sampling strategies (greedy, beam search, temperature)

Create a demo script to showcase model capabilities

6. Optimize Performance

Add CUDA support if not already implemented

Implement mixed-precision training

Optimize data loading and preprocessing pipeline

7. Create Examples and Documentation

Build example scripts for common use cases

Create comprehensive documentation

Add unit tests for critical components

8. Extend Model Architectures

Implement different attention mechanisms

Add support for different model sizes (small, medium, large)

Experiment with architectural variations

9. Add Dataset Support

Implement support for common NLP datasets

Create data preprocessing pipelines

Add data augmentation techniques

10. Build a Simple Interface/API

Create a simple Python API for training and inference

Add command-line interface for common operations

Consider building a simple web demo