Tensor embedding_weights = Tensor::xavier({vocab_size, embed_dim}, true); parameters_["embedding.weight"] = embedding_weights; // Initialize transformer layers for (size_t i = 0; i < num_layers; ++i) { // Initialize query weights Tensor query_weights = Tensor::xavier({embed_dim, hidden_dim}, true); parameters_[fmt::format("transformer.layers.{}.attention.query.weight", i)] = query_weights; // Initialize query bias Tensor query_bias = Tensor::zeros({hidden_dim}, true); parameters_[fmt::format("transformer.layers.{}.attention.query.bias", i)] = query_bias; // Similarly for key, value, output, etc. // ... } // Initialize output layer Tensor output_weights = Tensor::xavier({hidden_dim, vocab_size}, true); parameters_["output.weight"] = output_weights; Tensor output_bias = Tensor::zeros({vocab_size}, true); parameters_["output.bias"] = output_bias; Modify LanguageModel Initialization You need to ensure that all parameters are stored in the parameters_ map during initialization. For example: cpp // In your LanguageModel constructor or initialization method LanguageModel::LanguageModel(size_t vocab_size, size_t embed_dim, size_t hidden_dim, size_t num_layers) { // Initialize embedding layer Tensor embedding_weights = Tensor::xavier({vocab_size, embed_dim}, true); parameters_["embedding.weight"] = embedding_weights; // Initialize transformer layers for (size_t i = 0; i < num_layers; ++i) { // Initialize query weights Tensor query_weights = Tensor::xavier({embed_dim, hidden_dim}, true); parameters_[fmt::format("transformer.layers.{}.attention.query.weight", i)] = query_weights; // Initialize query bias Tensor query_bias = Tensor::zeros({hidden_dim}, true); parameters_[fmt::format("transformer.layers.{}.attention.query.bias", i)] = query_bias; // Similarly for key, value, output, etc. // ... } // Initialize output layer Tensor output_weights = Tensor::xavier({hidden_dim, vocab_size}, true); parameters_["output.weight"] = output_weights; Tensor output_bias = Tensor::zeros({vocab_size}, true); parameters_["output.bias"] = output_bias; } Note: You'll need to include the fmt library for string formatting, or use another method to create parameter names. 6. Add Error Handling and Validation Consider adding these validations to your serialization code: cpp // In the load method, after reading each parameter if (tensor.shape() != it->second.shape()) { throw std::runtime_error("Shape mismatch for parameter: " + name); } // Add checks for file operations if (file.fail()) { throw std::runtime_error("Error reading from file: " + path); } // Add checks for end of file if (file.eof()) { throw std::runtime_error("Unexpected end of file: " + path); } 7. Usage Example cpp // Create and train a model LanguageModelTrainer trainer(tokenizer, embedding_dim, hidden_dim, num_layers); trainer.train(corpus, epochs, batch_size, sequence_length); // Save the model trainer.save_model("trained_model.bin"); // Later, create a new trainer and load the model LanguageModelTrainer new_trainer(tokenizer, embedding_dim, hidden_dim, num_layers); new_trainer.load_model("trained_model.bin"); // Continue training or use for inference