#### 1. Implement Model Checkpointing and Serialization Implement serialization for model parameters Save/load optimizer state for resuming training Add versioning to handle model format changes #### 2. Add Validation and Evaluation Pipeline Implement a validation dataset split Add evaluation metrics (perplexity, accuracy, etc.) Create a proper test harness for benchmarking #### 3. Improve the Training Loop Add learning rate scheduling Implement gradient clipping Add early stopping based on validation performance Create training progress visualization #### 4. Enhance the Tokenizer Add support for special tokens (UNK, PAD, BOS, EOS) Implement vocabulary trimming/pruning Add serialization/deserialization for the tokenizer #### 5. Implement Text Generation Add inference methods for text generation Implement sampling strategies (greedy, beam search, temperature) Create a demo script to showcase model capabilities #### 6. Optimize Performance Add CUDA support if not already implemented Implement mixed-precision training Optimize data loading and preprocessing pipeline #### 7. Create Examples and Documentation Build example scripts for common use cases Create comprehensive documentation Add unit tests for critical components #### 8. Extend Model Architectures Implement different attention mechanisms Add support for different model sizes (small, medium, large) Experiment with architectural variations #### 9. Add Dataset Support Implement support for common NLP datasets Create data preprocessing pipelines Add data augmentation techniques #### 10. Build a Simple Interface/API Create a simple Python API for training and inference Add command-line interface for common operations Consider building a simple web demo